Adaptive Set-Membership Reduced-Rank Least Squares Beamforming Algorithms
نویسندگان
چکیده
This paper presents a new adaptive algorithm for the linearly constrained minimum variance (LCMV) beamformer design. We incorporate the set-membership filtering (SMF) mechanism into the reduced-rank joint iterative optimization (JIO) scheme to develop a constrained recursive least squares (RLS) based algorithm called JIO-SM-RLS. The proposed algorithm inherits the positive features of reduced-rank signal processing techniques to enhance the output performance, and utilizes the data-selective updates (around 10−15%) of the SMF methodology to save the computational cost significantly. An effective timevarying bound is imposed on the array output as a constraint to circumvent the risk of overbounding or underbounding, and to update the parameters for beamforming. The updated parameters construct a set of solutions (a membership set) that satisfy the constraints of the LCMV beamformer. Simulations are performed to show the superior performance of the proposed algorithm in terms of the convergence rate and the reduced computational complexity in comparison with the existing methods.
منابع مشابه
Low-Complexity Reduced-Rank Beamforming Algorithms
A reduced-rank framework with set-membership filtering (SMF) techniques is presented for adaptive beamforming problems encountered in radar systems. We develop and analyze stochastic gradient (SG) and recursive least squares (RLS)-type adaptive algorithms, which achieve an enhanced convergence and tracking performance with low computational cost as compared to existing techniques. Simulations s...
متن کاملRobust Rank Reduction Algorithm with Iterative Parameter Optimization and Vector Perturbation
In dynamic propagation environments, beamforming algorithms may suffer from strong interference, steering vector mismatches, a low convergence speed and a high computational complexity. Reduced-rank signal processing techniques provide a way to address the problems mentioned above. This paper presents a low-complexity robust data-dependent dimensionality reduction based on an iterative optimiza...
متن کاملAdaptive Reduced-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Filters: Design and Analysis
This paper presents reduced-rank linearly constrained minimum variance (LCMV) beamforming algorithms based on joint iterative optimization of filters. The proposed reduced-rank scheme is based on a constrained joint iterative optimization of filters according to the minimum variance criterion. The proposed optimization procedure adjusts the parameters of a projection matrix and an adaptive redu...
متن کاملLow-Complexity Robust Data-Adaptive Dimensionality Reduction Based on Joint Iterative Optimization of Parameters
This paper presents a low-complexity robust data-dependent dimensionality reduction based on a modified joint iterative optimization (MJIO) algorithm for reduced-rank beamforming and steering vector estimation. The proposed robust optimization procedure jointly adjusts the parameters of a rank-reduction matrix and an adaptive beamformer. The optimized rank-reduction matrix projects the received...
متن کاملRobust Reduced-Rank Adaptive LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Parameters
This chapter presents reduced-rank linearly constrained minimum variance (LCMV) algorithms based on the concept of joint iterative optimization of parameters. The proposed reduced-rank scheme is based on a constrained robust joint iterative optimization (RJIO) of parameters according to the minimum variance criterion. The robust optimization procedure adjusts the parameters of a rank-reduction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1302.4127 شماره
صفحات -
تاریخ انتشار 2013